Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields
نویسندگان
چکیده
منابع مشابه
Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields
The authors consider the problem of reconstructing (i.e., interpolating) a t-sparse multivariate polynomial given a black box which will produce the value of the polynomial for any value of the arguments. It is shown that, if the polynomial has coefficients in a finite field GF[q] and the black box can evaluate the polynomial in the field GF[qr2g,tnt+37], where n is the number of variables, the...
متن کاملOn Sparse Polynomial Interpolation over Finite Fields
We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes. One of the best algorithms for sparse polynomial interpolation over a finite field ...
متن کاملImproved Sparse Multivariate Polynomial Interpolation Algorithms
We consider the problem of interpolating sparse multivariate polynomials from their values. We discuss two algorithms for sparse interpolation, one due to Ben-Or and Tiwari (1988) and the other due to Zippel (1988). We present efficient algorithms for finding the rank of certain special Toeplitz systems arising in the Ben-Or and Tiwari algorithm and for solving transposed Vandermonde systems of...
متن کاملFaster sparse polynomial interpolation of straight-line programs over finite fields
We present a faster Monte Carlo algorithm for the interpolation of a straightline program to find a sparse polynomial f over an arbitrary finite field of size q. We assume a priori bounds D and T are given on the degree and number of terms of f . The approach presented in this paper is a hybrid of the diversified and recursive interpolation algorithms, the two previous fastest known probabilist...
متن کاملPolynomial-Time Factorization of Multivariate Polynomials over Finite Fields
We present a probabilistic algorithm that finds the irreducible factors of a bivariate polynomial with coefficients from a finite field in time polynomial in the input size, i.e. in the degree of the polynomial and log (cardinality of field). The algorithm generalizes to multivariate polynomials and has polynomial running time for densely encoded inputs. Also a deterministic version of the algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 1990
ISSN: 0097-5397,1095-7111
DOI: 10.1137/0219073